-
$$f(t) = \mathcal{F}^{-1}\{F(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i \omega t} \, d\omega$$
1 Comment
Groups
Recent posts
Study of a Parallel Resonant Circuit (RLC Circuit)
- November 30, 2024
Comparing Linux and Windows
- November 9, 2024
dc
- November 2, 2024
ADDRESS
Algeria
Website
Phone Number
+213790299296
$$f(t) = \mathcal{F}^{-1}\{F(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i \omega t} \, d\omega$$